| Na | Name Date | | Class | | |--|---|----------------|--|--| | НС | HOW DOES A WINDMILL WORK? | | | | | Draw a diagram of your windmill design in the space below. Label the following parts: blades, rotor, I
Label these concepts: force, friction, distance (height of string). | | | lowing parts: blades, rotor, hub, driveshaft | 2. | Which of the following variables did you explore? Number of blades, blade shape, blade size, blade pitch (angle) | ક), fan locati | on, wind speed, other (explain). | | | 3. | Rank the variables in your design from most important to lea | st importani | t. | | | | | | | | | 4. | What effect did the number of blades have on how much weight your windmill could lift? | |----|--| | 5. | How did the pitch (angle) of the blades affect the amount of weight your windmill could lift? | | 6. | Draw a picture of your wind turbine and label the energy transfers or conversions that took place as you used the wind to lift weight. | | | | | 7. | Explain the windmill design that had the best results. Why do you think this design worked best? |